logo
 

РУССКИЙ ЯЗЫК

 

Тетрадкин Град

БИОЛОГИЯ

ГЕОГРАФИЯ

МАТЕМАТИКА

Услышав выражение «таблица Менделеева», большинство читателей вспомнит большую схему, которая висит в кабинете химии. Это асимметричное собрание рядов и столбцов, которые словно выглядывают из‑за плеч учителя. Обычно таблица огромная, метра два в ширину. Она одновременно и подавляет вас, и кажется величественной, подчеркивая важность химии. Вы знакомитесь с ней уже в сентябре, и она остается незаменимой до самого конца мая. Кстати, это единственное наглядное пособие, которым можно пользоваться на экзамене – когда в вашем распоряжении нет ни конспектов, ни учебников. Разумеется, когда‑то периодическая система могла вас и раздражать, не в последнюю очередь потому, что многим она нисколечко ни помогает, хоть и висит у всех на виду как гигантская и абсолютно легальная шпаргалка.

Подробнее...

Как‑то раз Шекспир решил выдумать самое длинное слово в английском языке. Он предложил слово «Honorificabilitudinitatibus» (хонорификабилитудинитатибус), которое может либо означать «преисполненный всяческих почестей», либо читаться как анаграмма, подсказывающая, что пьесы Шекспира написал не сам Бард, а Френсис Бэкон. Но в этом слове всего двадцать семь букв, и ему далеко до самого длинного английского слова.

Разумеется, попытка найти самое длинное слово напоминает попытку удержаться на ногах под ударом волн. Вы быстро запутаетесь, ведь язык непрерывно развивается и постоянно меняет направление. Более того, язык значительно отличается в разных контекстах. Слово Шекспира, произнесенное шутом в комедии «Бесплодные усилия любви», очевидно, происходит из латыни. Но мы, пожалуй, не должны учитывать такие заимствованные слова, даже если они употребляются в английских фразах. Кроме того, если учитывать слова, которые просто обрастают множеством приставок и суффиксов (например, «antidisestablishmentarianism», 28 букв, на русский язык переводится как «сопротивление отделению церкви от государства») или явную абракадабру («supercalifragilisticexpialidocious», 34 буквы), то писатель сможет водить читателей за нос еще довольно долго, пока у него не онемеют руки.

Подробнее...

Можно сказать, что история периодической системы – это история многочисленных ученых, благодаря которым таблица приобрела современный вид.

Первый из героев этой главы носит одно из тех имен, которые из собственных стали нарицательными. Когда мы встречаем в исторических книгах упоминания о докторе Гильотене, Чарльзе Понци, Жюле Леотаре или Этьене Силуэте, мы невольно улыбаемся оттого, что кто‑то действительно носил такую фамилию. Мы поговорим об одном из создателей периодической системы, заслуживающим особых похвал, так как его знаменитая горелка позволила продемонстрировать больше студенческих фокусов, чем любой другой лабораторный прибор. Может показаться невероятным, что наш герой, немецкий химик Роберт Бунзен, на самом деле не изобретал «свою» горелку, а просто немного ее усовершенствовал и популяризовал в середине XIX века. Но даже без этой горелки его жизнь оказалась полна всяких опасностей и катастроф.

Подробнее...

Откуда берутся элементы? В течение многих веков в науке процветало заблуждение, что они ниоткуда не берутся. Велись долгие метафизические споры о том, кто (или Кто) мог создать мироздание и почему Он это сделал, но все соглашались, что все элементы – ровесники нашей Вселенной. Они не появляются и не исчезают, а просто существуют. Более новые теории, в частности теория Большого взрыва, сформулированная в 1930‑е годы, также принимали эту точку зрения за аксиому. Если все началось около четырнадцати миллиардов лет назад с первозданного мирового зернышка, в котором содержалась вся материя Вселенной, то все, что окружает нас сегодня, очевидно, было заключено именно в нем. Конечно, там не было ни алмазных диадем, ни жестяных банок, ни алюминиевой фольги, но всё сырье для создания элементов там имелось.

Один ученый подсчитал, что уже через десять минут после Большого взрыва сформировалась вся известная материя, а потом резюмировал: «элементы были изготовлены быстрее, чем хорошая хозяйка зажарит утку с картошкой». Опять же, здесь мы имеем дело с общепринятым мнением о том, что история всех элементов протекает исключительно стабильно и является, в сущности, «астроисторией».

Подробнее...

Многие столпы современной культуры, в частности демократия, философия, драматургия, уходят корнями в древнегреческую эпоху. То же можно сказать и о химическом оружии. Когда в 400 году до н. э. войска Спарты осадили Афины, спартанцы решили принудить неуступчивого соперника к капитуляции, просто выкурив его из города. При этом была применена наиболее совершенная химическая технология того времени – дымовая атака. Немногословные спартанцы подошли к Афинам с вязанками ядовитой древесины, дегтем и зловонной серой. Затем они подожгли все это и затаились вокруг окруженного города, ожидая, пока беззащитные кашляющие афиняне в панике побегут, оставив свои дома на разграбление. Несмотря на то что это была не менее блестящая тактическая находка, чем троянский конь, она не сработала. Клубы ядовитого дыма пронеслись по городу, но он выдержал эту газовую атаку, а позже афиняне вышли победителями из этой войны.

Эта неудача оказалась лишь предвестницей многих других. Приемы химической войны практически не совершенствовались на протяжении следующих двадцати четырех веков и оставались крайне примитивными – например, известны случаи обливания врагов кипящим маслом. Вплоть до Первой мировой войны газы не имели почти никакого стратегического значения. Дело не в том, что государства нового времени не осознавали их силы. Все научно развитые страны мира кроме одной воздержавшейся, подписали в 1899 году Гаагскую конвенцию о запрете химического оружия в боевых действиях. Но эта воздержавшаяся страна – Соединенные Штаты Америки – обосновала свою точку зрения.

Подробнее...

При взрыве сверхновой в нашу Солнечную систему были вброшены все существующие в природе элементы, а благодаря перемешиванию пород на молодых незатвердевших планетах эти элементы равномерно распределились в скальных грунтах. Но эти процессы не позволяют ответить на все вопросы, связанные с распределением элементов на Земле. С тех пор как взорвалась сверхновая, многие элементы уже исчезли с лица Земли, так как их ядра оказались слишком непрочными, чтобы уцелеть в природе. Такая нестабильность поражала ученых, в периодической системе оказалось несколько необъяснимых пробелов, которые химики менделеевской эпохи не могли заполнить, несмотря на все поиски. В конце концов, эти клетки таблицы все же удалось заполнить, но сначала пришлось развить целые новые научные дисциплины. Освоив эти науки, мы научились создавать элементы самостоятельно и лишь потом осознали, что из‑за непрочности некоторые элементы таят в себе страшную угрозу. Процессы синтеза и расщепления атомов оказались связаны гораздо теснее, чем кто‑либо мог предположить.

Начало этой истории было положено в Англии, в Университете Манчестера накануне Первой мировой войны. В те годы в Манчестере работала целая плеяда замечательных ученых, в частности Эрнест Резерфорд, руководивший исследовательской лабораторией. Одним из его наиболее перспективных студентов был Генри Мозли. Мозли был сыном натуралиста, восхищавшегося Чарльзом Дарвином, но выбрал себе профессию физика, а не биолога. Мозли относился к лабораторной работе так ответственно, как относятся к бдению у постели умирающего. Он задерживался в лаборатории по пятнадцать часов, как будто вечно не успевал завершить всех начатых опытов. Молодой человек даже не успевал поесть, перебиваясь фруктовым салатом и сыром. Как и многие одаренные личности, Мозли был одиночкой, строгим к себе и щепетильным человеком. Он открыто возмущался «вонючей неопрятностью» приезжих, наводнявших Манчестер.

Подробнее...

В 1950 году в бульварном разделе газеты New Yorker, который называется «Притча во языцех» (Talk of the Town), появилась любопытная заметка:

«В наши дни новые атомы появляются с удивительной, если не сказать – пугающей частотой. Недавно в калифорнийском университете Беркли ученые открыли элементы № 97 и 98, назвав их соответственно берклий и калифорний. Эти названия, на наш взгляд, являются исключительно недальновидными и недооценивают общественный резонанс этих открытий. Несомненно, талантливые калифорнийские ученые со дня на день откроют еще пару элементов, но они уже навсегда потеряли шанс обессмертить свою организацию в периодической системе. А как бы звучало: “университий” (97), “офий” (98), “калифорний” (99), “берклий” (100)».

Ученые из Беркли, лидерами которых выступали Гленн Сиборг и Альберт Гиорсо, не менее язвительно ответили, что выбранные ими названия были «упреждающими», чтобы после появления в таблице «университия» (97) и «офия» (98) какой‑нибудь нью‑йоркский физик не увековечил в таблице названия «ньюий» и «йоркий» в клетках 99 и 100.

Редакция New Yorker парировала: «Мы уже занимаемся синтезом ньюия и йоркия. Спасибо, названия у нас уже есть».

Подробнее...

Гленн Сиборг и Эл Гиорсо перевели охоту за неизвестными элементами на качественно новый уровень мастерства, но они, конечно, были не единственными учеными, сыгравшими ключевую роль в заполнении пробелов в периодической таблице. На самом деле, когда в 1960 году журнал Time назвал пятнадцать ученых в рубрике «Люди года», среди лауреатов оказались не Сиборг и Гиорсо, а величайший первооткрыватель элементов из более ранней эпохи, тот человек, который нашел самый неуловимый и эфемерный элемент во всей таблице. И случилось это в годы, когда Сиборг еще учился в университете. Этим человеком был Эмилио Сегре.

Редакторы Time попытались оформить обложку этого выпуска в футуристическом стиле. В центре картинки изображено крошечное пульсирующее красное ядро. Окружают его не электроны, а пятнадцать снимков крупным планом. Все изображенные на них люди – со сдержанным и напыщенным выражением лица, знакомым всякому, кто когда‑либо потешался над портретами учителей на развороте выпускного альбома. Вы найдете здесь лица генетиков, астрономов, пионеров лазерной техники и борцов с раком. Не обошлось и без угрюмой физиономии Уильяма Шокли, завистливого исследователя транзисторов и будущего евгеника. Даже в этом номере Шокли не удержался и пространно высказался о своих расовых теориях.

Подробнее...

Полинг на собственном горьком опыте смог уяснить, что законы биологии гораздо более тонкие, чем законы химии. Вы можете по‑разному химически воздействовать на аминокислоты и получить в итоге такой же набор измененных, но целых молекул. Если подвергнуть такому же воздействию более сложные и хрупкие белки живого существа, то белки разрушатся. Такое разрушительное воздействие на белок могут оказывать нагревание, кислоты или, хуже всего, вредные элементы. Самые опасные из них бьют практически по всем уязвимым точкам живых клеток, часто маскируясь под жизненно необходимые минеральные и питательные вещества. А истории о том, как коварно подобные элементы способны убивать, являются одними из самых мрачных сюжетных линий, связанных с периодической системой. Итак, добро пожаловать в «коридор ядов».

Самый легкий из наиболее токсичных элементов – кадмий, чья дурная слава восходит к истории древних копей, расположенных в центральной Японии. Рудокопы начали добывать драгоценные металлы на приисках в Камиоке в 710 году. В течение следующих веков оттуда извлекали золото, свинец, серебро и медь, пока страной владели сначала многочисленные сёгуны, а потом – промышленные магнаты. Но только через двенадцать веков после того, как в Камиоке начали разрабатывать первую жилу, шахтеры приступили к добыче кадмия. Вскоре копи превратились в одно из самых опасных мест в Японии, которое стало ассоциироваться с криком «итай‑итай!» – это междометие в японском языке выражает сильную боль.

Подробнее...

Периодическая таблица полна переменчивых элементов, большинство из которых гораздо сложнее, чем прямолинейные агрессоры из «коридора ядов». Странные элементы творят в нашем организме странные дела – зачастую во вред нам, но иногда и на пользу. Элемент, токсичный в одних обстоятельствах, в других может оказаться противоядием, которое спасет жизнь. Элементы, участвующие в нашем метаболизме каким‑то необычным образом, могут стать для врачей новыми диагностическими инструментами. Взаимосвязи между элементами и лекарствами даже помогают прояснить, как сама жизнь вызревает из неодушевленного химического материала, наполняющего периодическую систему.

Лекарства на основе некоторых элементов имеют удивительно давнюю историю. Предполагается, что древнеримские офицеры болели меньше, чем простые легионеры, так как ели с серебряных тарелок. Как ни бесполезна была твердая валюта в диких краях, большинство семей американских первопроходцев обычно брали с собой в путь как минимум одну хорошую серебряную монету, которую провозили в фургонах «Конестога» через прерии, заботливо спрятав в молочной крынке. Монета была нужна не как платежное средство, а чтобы молоко не испортилось. Известный респектабельный астроном Тихо Браге, сломавший нос во время пьяной дуэли в 1564 году в плохо освещенном банкетном зале, заказал себе протез носа из серебра. Этот металл всегда считался модным и, что гораздо важнее, помогал бороться с инфекциями. Правда, он слишком заметно блестел, из‑за чего Браге был вынужден повсюду носить с собой банки с кремом, то и дело смазывая свой протез.

Подробнее...

Никто и подумать не мог, что такой обычный сероватый металл, как родий, однажды поможет создать столь чудесное лекарство, как леводопа. Даже после долгих веков развития химии элементы не перестают нас удивлять, преподнося как приятные, так и неприятные сюрпризы. Элементы могут нарушить наше бессознательное «автоматическое» дыхание, исказить наши ощущения и даже, как йод, изменить наивысшие человеческие способности. Да, химики хорошо изучили многие свойства элементов, такие как температура плавления и распространенность в земной коре. В 2804‑страничном фолианте «Справочник по химии и физике» (Handbook of Chemistry and Physics) – святыне всех химиков – перечислены значения всех физических параметров всех химических элементов с невероятным количеством знаков после запятой. На атомном уровне элементы действительно ведут себя предсказуемо. Но как только мы вступаем в биологический хаос, элементы не перестают нас изумлять. Даже тривиальные элементы, встречающиеся нам в повседневной жизни, могут подкинуть кое‑какие неприятные сюрпризы, если окажутся в необычной среде.

19 марта 1981 года пятеро техников сняли панель с корпуса тренировочного корабля в штаб‑квартире NASA на мысе Канаверал и вошли в забитую аппаратурой заднюю камеру над двигателем. Только что закончился тридцатитрехчасовой «день» – пробный старт прошел безукоризненно. Агентство было вполне уверено в исправности «Колумбии» – самого современного из когда‑либо созданных космических шаттлов. В 1981 году кораблю предстояло отправиться в свой первый полет. Вся сложная работа уже была окончена, усталые, но довольные техники залезли в отсек, чтобы выполнить самую что ни на есть рутинную проверку систем. Через считаные секунды они подозрительно тихо выползли оттуда.

Подробнее...

Мозг человека и наш разум – пожалуй, самые сложные феномены, известные науке. Они отягощают человека сильными, сложными, а порой и противоречивыми желаниями. Даже такое строгое научное произведение, как периодическая система элементов, отражает эти желания. Ведь именно люди со всеми их достоинствами и недостатками построили периодическую таблицу. Более того, эту таблицу можно назвать полем, на котором концептуальное встречается с приземленным, где наше стремление к познанию Вселенной – питаемое самыми лучшими качествами человеческой натуры – взаимодействует с материальными кирпичиками, из которых состоит наш мир. Этот материал напоминает нам о наших пороках и несовершенстве. В периодической системе отразились разочарования и поражения, которые нам доводилось терпеть в самых разных областях: экономике, психологии, искусстве и – как свидетельствует наследие Ганди и история с йодом – в политике. Социальная история элементов не менее богата, чем научная.

Эту историю легче всего проследить в Европе. Начнем со страны, которая была такой же жертвой в большой игре колониальных империй, как Индия времен Махатмы Ганди. Польшу, напоминавшую дешевый балаган, называли «страной на колесах». Такое прозвище она получила за все свои выходы на историческую сцену и отступления с нее. Империи, окружавшие Польшу, – Россия, Австро‑Венгрия, Пруссия – издавна вели войны на этой равнинной незащищенной болотистой территории и по очереди вычерчивали на политической карте арену для «Божьих игрищ». Если раскрыть карту, составленную в любой период за последние пять веков, то вполне вероятно, что Польши там не будет.

Подробнее...

Конечно, в периодической системе отразились и история, и политика, но гораздо более длительные и тесные взаимосвязи существуют между элементами и деньгами. История о многих металлах будет неполной без обширных экскурсов в историю денег, а значит – и в историю их подделки. В различные эпохи в разных странах роль денег играли скот, пряности, дельфиньи зубы, соль, какао‑бобы, сигареты, лапки жуков и тюльпаны, но ничто из этого нельзя было достоверно подделать. Справиться с металлами фальшивомонетчикам было гораздо проще. Переходные металлы особенно похожи своими химическими свойствами и плотностью, так как у них схожие электронные структуры. Переходные металлы легко смешиваются друг с другом и заменяют друг друга в сплавах. Различные комбинации драгоценных и не столь драгоценных металлов обманывали людей на протяжении тысячелетий.

Около 700 года до н. э. царевич Мидас унаследовал Фригийское царство, которое располагалось на территории современной Турции. Согласно различным мифам (в которых, возможно, смешаны две исторические личности по имени Мидас), он вел насыщенную жизнь. Ревнивый бог Аполлон, покровительствовавший искусствам, попросил Мидаса выступить судьей на состязании по музицированию между самим Аполлоном и другими мастерами игры на свирели. Когда Мидас отдал победу не Аполлону, а другому участнику, разгневанный бог превратил уши Мидаса в ослиные (поскольку он не заслуживал человеческих ушей, коль так плохо разбирался в музыке).

Подробнее...

По мере того как наука усложнялась на протяжении всей своей истории, занятия ею становились все дороже. Деньги, большие деньги стали определять, будет ли развиваться наука и когда и как она будет развиваться. Уже в 1956 году немецко‑английская романистка Сибил Бедфорд писала, что многие поколения людей успели пожить на Земле с тех пор, как «законы мироздания были такой проблемой, которой человек мог в свое удовольствие заниматься в мастерской, устроенной за конюшней».

Разумеется, очень немногие люди, в основном состоятельные землевладельцы, могли позволить себе такую маленькую мастерскую, где можно было заниматься наукой в те времена, о которых тосковала госпожа Бедфорд. Она имела в виду XVIII и XIX века. На самом деле, неслучайно, что именно представители привилегированных классов совершали такие открытия, как обнаружение новых элементов. Больше ни у кого не было свободного времени, чтобы спокойно сидеть и обсуждать, из чего состоят какие‑то странные минеральные образцы.

Подробнее...

Роберт Лоуэлл является типичным представителем тех людей, кого называют «сумасшедшими художниками». Но в нашей коллективной психологии встречается и другая разновидность подобного расстройства: сумасшедший ученый. Сумасшедшие ученые, участвовавшие в становлении периодической системы, обычно не вызывали такого сильного общественного резонанса, как безумные люди искусства. Большинство из них вели совершенно непримечательную личную жизнь. Их душевные болезни были не такими яркими, а ошибки – типичны для такой разновидности безумия, которая иногда именуется «патологической наукой». Самое интересное заключается в том, как такое болезненное помешательство может существовать в голове человека наряду с замечательным разумом.

В отличие от большинства других ученых, уже упомянутых, Уильям Крукс, родившийся в Лондоне в 1832 году в семье портного, никогда не работал в университете. Он был первым из шестнадцати детей, а позже сам стал отцом десятерых отпрысков. Чтобы прокормить семью, он написал научно‑популярную книгу об алмазах, а также занимался редактированием безапелляционного и довольно легкомысленного научно‑популярного журнала, который назывался «Новости химии». Тем не менее Крукс – бородатый человек с острыми усами, всегда носивший очки, – выполнил несколько первоклассных научных исследований с такими элементами, как селен и таллий, и был избран в члены самого престижного английского научного клуба – Королевского общества. В ту пору Круксу был всего 31 год, а через десять лет его чуть было не вышвырнули оттуда.

Подробнее...

Рентген не только показал пример великолепного и тщательного научного исследования. Он также напомнил коллегам о том, что в периодической системе то и дело обнаруживаются новые сюрпризы. Даже сегодня мы то и дело узнаем об элементах что‑то совершенно новое. Но большинство «легких» открытий ко времени Рентгена уже было совершено, для обнаружения новых элементов требовалось проявить немалую изобретательность. Ученым приходилось «допрашивать» вещества в крайне жестких условиях – особенно под действием сильнейшего холода, который гипнотизирует элементы и заставляет их вести себя необычно. Экстремальный холод не предвещает ничего хорошего и для людей, стремящихся к новым открытиям. К 1911 году достойные последователи Льюиса и Кларка уже успели исследовать бо́льшую часть Антарктики, но нога человека еще ни разу не ступала на Южный полюс. Это неизбежно привело к бескомпромиссной гонке между выдающимися исследователями, желавшими побывать там первыми. Именно эта гонка и привела к мрачной и назидательной истории о том, какие сюрпризы подбрасывает химия при экстремально низких температурах.

Тот год выдался холодным даже по антарктическим меркам, но несколько белокожих англичан во главе с Робертом Скоттом все равно решили сделать все, чтобы достичь отметки 90° южной широты. Они заготовили припасы, снарядили собачьи упряжки – и караван двинулся к цели от антарктического побережья. Большинство участников экспедиции были своеобразной «группой поддержки» – они предусмотрительно оставляли на пути пайки с едой и запасы топлива. Это делалось, чтобы небольшая команда, которая совершит последний рывок к полюсу, смогла воспользоваться всем этим на обратном пути.

Подробнее...

Для того чтобы совершить очередной прорыв в науке об элементах, совсем не обязательно исследовать такие экзотические и сложные состояния вещества, как конденсат Бозе– Эйнштейна. Привычные твердые тела, жидкости и газы все еще могут поведать нам кое‑какие секреты, если нам будут благоволить госпожа Удача и научные музы. Среди ученых ходит легенда о том, что идея об одном из самых важных лабораторных приборов пришла в голову его создателю не просто за стаканом пива, но и благодаря стакану пива.

В те годы Дональд Глазер был скромным, но жаждущим признания младшим научным сотрудником Мичиганского университета. Когда ему было двадцать пять лет, он любил наведываться в ближайшие бары, чтобы утолить жажду. Как‑то вечером он рассматривал пузырьки, поднимавшиеся в стакане со светлым пивом, и сам не заметил, как стал размышлять о физике частиц. На тот момент (это было в 1952 году) ученые пользовались знаниями, полученными в ходе выполнения Манхэттенского проекта и других исследований в области ядерной физики, чтобы вообразить экзотические и неустойчивые разновидности частиц – к‑мезоны, мюоны и пионы, призрачные сущности из того же мира, который наполнен хорошо знакомыми нам протонами, нейтронами и электронами. Специалисты по физике частиц подозревали, даже надеялись, что эти частицы помогут опровергнуть периодическую систему, казавшуюся основополагающей картой материального мира, так как позволят заглянуть еще глубже в субатомные недра.

Подробнее...

Вспомните самого противного преподавателя естественных дисциплин, который когда‑либо у вас был. Того самого, который безжалостно снижал оценку, если шестой знак после запятой в вашем ответе был округлен неправильно, у которого на футболке красовалась таблица Менделеева, который поправлял каждого, кто по недомыслию говорил «вес» вместо «масса». Еще он заставлял всех надевать защитные лабораторные очки, даже если требовалось размешать сахар в стакане. А теперь представьте человека, который даже такому учителю показался бы невыносимо дотошным. Люди именно такого сорта работают в бюро стандартов и метрологии.

В большинстве стран есть подобные учреждения, перед сотрудниками которых стоит задача измерить решительно все – от того, какова точная длительность секунды, до того, при каком содержании ртути в говяжьей печени эту печень допускается употреблять в пищу (она очень низкая, если верить американскому Национальному институту стандартов и технологий). Для ученых, работающих в бюро по стандартизации, измерения – не просто практическая деятельность, обеспечивающая существование науки, они практически приравнивают науку к измерениям. Прогресс в любых научных дисциплинах, от пост‑эйнштейновской космологии до астробиологических поисков внеземной жизни, зависит от нашего умения производить все более точные измерения, опираясь на все более ничтожные крупицы информации.

Подробнее...

Нижний край таблицы Менделеева овеян тайной. Высокорадиоактивные элементы редко встречаются в природе, поэтому люди склонны интуитивно полагать, что нестабильные, легко распадающиеся элементы и будут самыми редкими. Так, например, редчайшим элементом является в высшей степени неустойчивый франций, который встречается в земной коре только как промежуточный продукт. В естественной среде атомы франция распадаются быстрее, чем атомы любого другого элемента. И все же самым редким элементом на Земле является вовсе не франций. Такой вот парадокс, и решение этого парадокса лежит за привычными и удобными рамками таблицы Менделеева. За решениями мы должны отправиться в удивительный край под названием «остров стабильности» – Новый Свет физиков‑ядерщиков. Остров стабильности – своего рода Америка, на которую современные ученые‑первооткрыватели возлагают большие надежды, ведь на сегодняшний день это самая удачная, если не единственная, возможность расширить границы периодической таблицы элементов.

Подробнее...

Поиск

 
 

Знаев

 

Блок "Поделиться"

 
Яндекс.Метрика Top.Mail.Ru

Copyright © 2023 High School Rights Reserved.