logo
 

НАЧАЛЬНАЯ ШКОЛА

РУССКИЙ ЯЗЫК

 

ИСТОРИЯ РОССИИ

БИОЛОГИЯ

ГЕОГРАФИЯ

МАТЕМАТИКА

Из описанных Галилео результатов эксперимента с маятниками и наклонными плоскостями и даже из его размышлений об экспериментах ясно, что он обладал очень острой интуицией в отношении энергии и ее сохранения. Хотя Галилео описывал результаты своей работы в «Диалоге о двух главнейших системах мира», он никогда целиком не осознавал, что у него в руках было начало закона сохранения энергии. Действительно, он описывал в первую очередь взаимодействия кинетической и потенциальной энергий, которые вместе составляют механическую энергию; они были единственными формами энергии, которые он знал из экспериментов.

Строго говоря, в рамках систем Галилео считал, что механическая энергия будет сохраняться только при отсутствии трения. В своих экспериментах он стремился устранить трение и сознательно игнорировал его в результатах и выводах. «Игнорировал» не в том смысле, что относился к нему небрежно. Наоборот, Галилео был очень обеспокоен точностью своих экспериментальных измерений.

Однако он не позволял своему беспокойству о деталях препятствовать пониманию того, что определенные несоответствия или очевидные противоречия — просто мелочи, которыми оправданно было пренебречь, чтобы увидеть большую картину. Таким образом, в то время как современники Галилео мучились с подобными деталями, неспособные сделать следующий большой шаг, Галилео твердо верил в математическую последовательность природы и оставил их далеко позади. Эта способность Галилео использовать собственные наблюдения при изучении реальных систем (вроде объекта, катящегося по наклонной плоскости), где присутствовало трение, и выявлять на их основе фундаментальные физические принципы доказывает его истинную гениальность.

Сегодня мы понимаем результаты работы всех систем, которые изучал Галилео, с точки зрения сохранения механической энергии. Представьте себе предмет, лежащий на вашем журнальном столике, — пульт от вашего телевизора. Сейчас, естественно, у предмета нет кинетической энергии, так как он не двигается сам по себе (я надеюсь). Но давайте рассмотрим такой сценарий: предположите, что вы очень мягко подталкиваете его к краю стола, пока он наконец не падает на пол. Очевидно, когда пульт падал, у него была кинетическая энергия (до того, как он коснулся пола). Но прежде чем вы толкнули его к краю и уронили на пол, он обладал потенциальной энергией.

В этом примере объект обладал потенциальной энергией, пока он лежал на столе, а после он приобрел кинетическую; таково отношение между потенциальной и кинетической энергиями объекта.

Независимо от того, что это за объект — качающийся маятник, объект, катящийся по наклонной плоскости или падающий со здания, или пульт от ТВ на вашем журнальном столике, — нахождение на определенной высоте дает ему потенциальную энергию, в то время как падение с этой высоты преобразовывает потенциальную энергию в кинетическую. Потенциальная энергия в этих примерах имеет в своей основе земную силу тяготения, которая «тянет» данный объект вниз.

В то время как эксперименты Галилео существенно развили наши понимание механической энергии, у него самого никогда не было четкого понимания того, что такое энергия на самом деле. В этом отношении он был не одинок. Непонимание в определении энергии — и физически, и математически — все еще было глубоко связано с темами импульса и силы. И, как будто этого было недостаточно, было очевидно, что природа вещества как-то в этом замешана; к несчастью, до ясного понимания последней было еще далеко. Галилео умер в 1642 году, свои последние девять лет жизни он провел под домашним арестом, а заключительные четыре года — в полной слепоте. Достаточно сказать, что в описании энергии Галилео продвинулся дальше, чем кто-либо еще. К моменту его смерти истинный характер энергии все еще был тайной и до полного понимания оставалось больше двухсот лет.

 

Поиск

 

ФИЗИКА

 

Блок "Поделиться"

 
 
Яндекс.Метрика Top.Mail.Ru

Copyright © 2021 High School Rights Reserved.