logo
 

РУССКИЙ ЯЗЫК

ЛИТЕРАТУРА

 

ИСТОРИЯ РОССИИ

БИОЛОГИЯ

ГЕОГРАФИЯ

МАТЕМАТИКА

Перед нами стоит башня из деревянных блоков. Роботизированная рука с одним захватом медленно движется вокруг башни, прощупывая и подталкивая различные блоки. Она останавливает свой выбор на одном из них и осторожно выталкивает его на полкорпуса, облегчая движение с помощью покачиваний. Затем она перемещается на другую сторону, осторожно вытаскивает этот блок и кладет его на вершину башни. Далее робот возвращается назад и снова начинает кружить, пока не найдет другой кажущийся ему подходящим блок. Это не совсем обычный робот. Он уже узнал, что такое задача, научился оценивать силы и получать обратную связь, чтобы принимать решения о дальнейшем действии. Это робот, который обучает сам себя.

ИИ может быть удивительным, когда дело доходит до изучения чисто теоретических игр – от шахмат до видеоигр. Но поставьте большинство роботов перед «Дженгой» (башня из деревянных блоков, которые нужно аккуратно вынимать и класть сверху), и результат будет плачевным. Даже если робот создавался с использованием контролируемого обучения в моделируемых условиях, сложность и изменчивость реального мира – совершенно другая история. Обычный способ научить ИИ понимать действительность заключается в том, чтобы показать ему миллионы примеров хороших и плохих попыток удаления реальных деревянных блоков. Подобный подход занял бы очень много времени, так как башню пришлось бы восстанавливать миллионы раз. Каждый деревянный блок слегка отличается от соседнего, непредсказуемые факторы, такие как температура и влажность, способны влиять на трение различными способами, и то, что робот узнал в один день, может не сработать в другой.




По этой причине Нима Фазели и его коллеги из МТИ разработали новый ИИ. Вместо того чтобы тренировать свой ИИ, используя контролируемое обучение, исследователи помещали руку робота перед башней и позволяли ей учиться самостоятельно – играя. Только толкая, вытягивая и ощущая результат, робот может понять, как его действия повлияют на шаткую, неровную башню из блоков. Примерно после 300 попыток он сгруппировал свои действия по типу блока, например: застрявший блок – лучше оставить его в покое, незакрепленный блок – подходит, чтобы удалить. Этот ИИ в буквальном смысле почувствовал проблему, а затем обобщил свое понимание и скорректировал будущие шаги. Робот с подобными способностями может улучшить работу заводских машин, помогая им понимать, к примеру, что какой-то элемент неправильно зафиксирован. Он может научить их чувствовать силу и осязать, даже если со временем что-то в их «обязанностях» изменится.

 

 

Игра в «Дженгу»… требует овладения физическими навыками, такими как ощупывание, подталкивание, вытягивание, перестановка и выравнивание фигур.

АЛЬБЕРТО РОДРИГЕС, профессор МТИ (2019)

 

В ИИ самообучение по очевидным причинам часто называют неконтролируемым, или обучением без учителя. Эти ИИ не «отправляются в школу» для интенсивных тренировок, как это происходит, если процесс идет под наблюдением. В случае неконтролируемого обучения ИИ получает данные, которые затем должен будет понимать самостоятельно. Также обучение без учителя необходимо, когда у нас нет данных для тренировки ИИ. Порой данные нельзя получить (каждая возможная выигрышная стратегия в игре го), иногда же данных и вовсе не существует (при управлении новым роботом у нас нет предыдущих примеров хороших решений, но мы узнаем, когда проблема будет решена, так как теперь робот сможет выполнять поставленные задачи).

 

Поиск

 

ФИЗИКА

 

Блок "Поделиться"

 
 
Яндекс.Метрика Top.Mail.Ru

Copyright © 2021 High School Rights Reserved.